

Lessons from DevOps: Taking DevOps
practices into your AppSec Life

Matt Tesauro

5 months with Pearson
 Application Security Lead Engineer
Prior to Pearson

● Rackspace - Lead Engineer, Product Security
● AppSec consulting

o VP Services, Praetorian
o Consultant Trustwave’s Spiderlabs

● TEA - Senior Security Engineer
● DIR - Penetration Tester
● Texas A&M University

o Systems Analyst, Sys Admin, Developer, DBA
o Lecturer in MIS department

● Viatel - Internet App Developer

Who am I?

Other professional experience
● OWASP Live CD / OWASP WTE

o Project lead 2008 to present, over 300K downloads
o http://appseclive.org

● OWASP Foundation Board of Directors
o International charity focused on improving software

security
● Multiple speaking engagements internationally

at AppSec, DHS, ISC2, SANS… conferences
● Application Security Training internationally
● B.S. Economics, M.S. in MIS

o Strong believer in the value of cross-
discipline study

Who am I?

• Cycle time for software is getting
shorter

• Continuous delivery is a goal

• Scanning windows are not viable

• First mover / first to market
advantage

The Problem

The Problem –
or at least more problems

• Traditional software development left little time to test

• DevOps, Agile and Continuous Delivery squeeze those windows even more

• New languages and programming methods aren’t making this better

• Growth of interpreted languages with loose typing hurts static analysis
efforts

• Few automated tools to test APIs especially
RESTful APIs

• Little time for any testing, manual testing is doomed

• Automated software
testing

• Automated operational
infrastructure

• Automated security
testing

THE SOLUTION

“Don’t get set into one form,
adapt it and build your own,
and let it grow, be like water”.

A time to morn...

The old way...

 Very early and prescriptive requirements and design

 Long development cycles

 Waterfall Approach

 Groups work in Silos - Dev, SysAdmin, QA, Security

 Possible feedback from bug reports but little else

 Throwing code over the wall

Traditional Software Dev & Ops

Waterfall Development

Why DevOps came to be

What's different about DevOps

 Web/Cloud companies needed

 - high availability

 - fast introduction of new features

 Easy for users to switch to a competing service + fist mover advantage

 No media to ship with SaaS models

 Cultural change – not just new cool tech aka CI/CD, Docker...

 Focus on clear business objectives

 Dev and SysAdmins share responsibility for uptime, deploys, downtime

 Emphasize people and process, repeatability

 Goal is better uptime and lower operational costs

The DevOps Answer

"Notice that the stiffest tree
 is most easily cracked,

 while the bamboo or willow
 survives by bending

with the wind."

The Phoenix Project
3 Ways of DevOps

Strategies for Improving Operations

Workflow

The 3 Ways of DevOps

1

2

3

Look at your purpose and those process which aid it

● Make sure the process is correct from beginning

 to the end

Then look at ways to speed up that process
● Value Stream – the name a the process which provides

value to the business
● Working from left to right – think of a time line:

 business / development => customer / operations
● Flow [rate] – the speed work goes through the process

#1 - Workflow

An example workflow

Software release process
● Code written
● Code committed to a code repository
● Unit test the code
● Package the code for deployment
● Integration testing
● Deploy code to production

#1 - Workflow

The AppSec Pipeline

Key Features of AppSec Pipelines
• Designed for iterative improvement
• Provides a reusable path for AppSec activities to follow
• Provides a consistent process for both the team and our
constituency

• One way flow with well-defined states
• Relies heavily on automation
• Has the ability to grow in function organically over time
• Gracefully interconnects with the development process

Spending time optimizing anything
other than the critical resource

is an illusion.

Key Goals of AppSec Pipelines

• Optimize the critical resource – App Sec personnel
• Automate all the things that don’t require a human brain
• Drive up consistency
• Increase tracking of work status
• Increase flow through the system
• Increase visibility and metrics
• Reduce any dev team friction with application security

Pipeline - Intake
• “First Impression”

• Major categories of Intake

• Existing App

• New App

• Previously tested App

• App to re-test findings

• Key Concepts

• Ask for data about Apps only once

• Have data reviewed when an App
returns

• Adapt data collected based on
broad categories of Apps

Pipeline – the Middle
• Inbound request triage

• Ala Carte App Sec

• Dynamic Testing

• Static Testing

• Re-Testing mitigated findings

• Mix and match based on risk

• Key Concepts

• Activities can be run in parallel

• Automation on setup, configuration,
data export

• Focus people on customization
rather than setup

Pipeline – the End
• Source of truth for all AppSec activities

• ThreadFix is used to

• Dedup / Consolidate findings

• Normalize scanner data

• Generate Metrics

• Push issues to bug trackers

• Report and metrics automation

• REST + tfclient

• Source of many touch points with
external teams

Why we like AppSec Pipelines
• Allow us to have visibility into WIP
• Better understand/track/optimize flow of engagements

• Average static test takes ...
• Great increase in consistency
• Easier re-allocation of engagements between staff
• Each step has a well defined interface
• Knowing who has what allows for more informed “cost
of switching” conversations

• Flexible enough for a range of skills and app maturity

If you want to hear more...

Making things repeatable

 Remove all haphazard and ad hoc work from the process

 Repeat until stable, I like doing the first couple times manually

 with a 'run book'

 Scripting languages are your friends

 Config Mgmt – Puppet, Chef, Salt, Ansible, Jenkins, CFEngine, …

 Creating deployable artifacts from a branch/release aka .rpm / .deb / .msi

 Make sure what you do can be done on 1 server or 10,000 servers

#1 - Workflow
Each Step Repeatable

Making things repeatable in AppSec

Make tests easily repeatable

You will be re-testing after dev fixes so repeatable tests help retesting

You can hand them to devs to test as they write mitigation

Make tests easy to understand

You will likely be handing work off between App Sec staff or to devs

Make tests abstract and combine-able

Ala carte tests for mixing and matching

Think about the Unix pipe | and its power

#1 - Workflow
Each Step Repeatable

"I fear not the man
who has practiced
ten thousand kicks
once,
but I fear the man
who has practiced
one kick ten
thousand times."

Work left to right but don't pass on failures

For AppSec, Defects == False Positives

 Test early and often

 Increase the rigor of testing as you work left to right

 When a failure occurs, end that flow and start a new one after corrections

 The further right you are, the more expensive failure is

#1 - Workflow
Never Pass on Defects

If you can automate code review, you still must triage
1 false positive == 100 valid bugs

If results aren't actionable, you've failed
Best security ROI is findings early in the dev lifecycle

Your fix cannot be my new problem
Ensure no single-step optimizations degrade overall performance
Spending time optimizing anything other than the critical resource is an illusion.
Find the bottle neck in your workflow and start there
 - Upstream changes will just back things up
 - Downstream changes won't manifest since input is limited
Each new optimization creates a new bottleneck – iterate on this

#1 - Workflow
Local optimizations with a global view

Now go faster
 Make sure you have a well-defined, repeatable process first

 Look for manual steps that can be automated

 Look for duplicate work that can be removed/eliminated

 Measuring/tracking time taken at each step is crucial

 Where does the flow ebb?

Increase the flow of work

Workflow

Improve Feedback

The 3 Ways of DevOps

1

2

3

Open yourself to upstream and downstream information

 Feedback loops occur when information is gathered from

 - upstream (business / development)

 - downstream (customer / operations)

 Make visible problems, concerns, potential improvements

– share this publicly within your company

 Learn as you move left to right so improvements aren't lost

 Requests are opportunities to better fulfill the needs of the business

 There is rarely enough feedback, capture and look for more

 Feedback collected can be used to optimally improve the system

#2 – Improve Feedback

Customers are also inside your business

Customer is more then the 'consumer' at the end of the process

 - Each step is the customer of the previous step

 - Understand what the next steps need from you to succeed

Remember, feedback isn't guaranteed - encourage it by responding

Make feedback & responding quick, easy and readily available

#2 – Improve Feedback
Understand and respond to your customers

Embed knowledge when needed
Go all in

 Keep specialized knowledge out of people's heads and into the system

 - Check it into source control – automatically versioned.

 Moving left to right, keep needed info in the

 stage that requires it

Workflow

Improve Feedback

Continual Experimentation and Learning

The 3 Ways of DevOps

1

2

3

Create a culture of innovation and experimentation

 The fundamentals are now solid, what can your new knowledge buy you?

 The business culture must allow for and embrace innovation &

 experimentation

 Two essential things must be understood by the business and all involved

 - We can learn from the failed experiments and risks we take

 - Mastery comes with repetition and practice

 and you won't be a master the first N times you practice

#3 – Continual Experimentation &
 Learning

Findings directly to bug trackers
• PDFs are great, bugs are better

• Work with developer teams to submit bugs
• Security category needs to exist
• Bonus points if the bug tracker has an API

• Security issues are now part of the normal work flow
• Beware of death by backlog - do security sprints
• Learn how the team treats issues

• ThreadFix is nice for metrics and pumping issues into
issue trackers - http://code.google.com/p/threadfix/

For the reticent: nag, nag, nag
• Attach a SLA to each severity level for findings

• Remediation plan vs Fixed
• “Age” all findings against these SLAs
• Politely warn when SLA dates are close

• Walk up the Org chart as things
 get older

• Bonus points for dashboards and
 bug tracker APIs

• Get management sold first

Automating Infrastructure

• Declarative configuration language
• Plain-text configuration in source control
• Fully programmatic, no manual interactions

Cookbooks, Stacks, Playbooks, ...
• Most have methods to
bundle / share automation
routines

• You will have to write your
own / customize

• Good place to spend
security cycles

-Merge patches upstream for
extra good karma points.

Grouping & Tagging
• Tagging your
servers applies the
required set of
automation

• A base set of for all
servers

• Each server can
have multiple tags

• Map tags to security
requirements

Node
Node

Node
Node

DB

Node
Node

Node
Node

Cache

Node
Node

Node
Node

Web

Apache

Monitoring

MySql

Memcache

Works for Clouds Too!

Inspector – you need one
• For each group and/or tag

• Review the recipe, do a PR aka Pull Request

• Hook provisioning for post deploy review

• Focus on checking for code compliance

-Not perfection, bare minimums

• Can include multiple facets

-Security, Scalability, Compliance

• Vuln scanners – manual or auto

• Jenkins Job + Lynis (open source)

Agent – one mole to rule them all
• Add an agent to the standard deploy

• Read-only helps sell to SysAdmin
• Looks at the state of the system
• Reports the state to the “mothership”

• Add a dashboard to visualize state of infrastructure
• Change policy, servers go red
• Watch the board go green as patches roll-out

• Roll your own or find a vendor
 Mozilla MIG

Turn Vuln scanning on its head
• Add value for your ops teams

• Subscribe and parse vuln emails for key software
• Get this info during threat models or config mgmt
• Provide an early warning and remove panic from
software updates

• Roll your own or find a vendor
• Gmail + filters can work surprisingly well
• Secunia VIM covers 40K+ products

• Reverse the scan then report standard

• Automate, automate, automate
• Look for “paper cuts” and fix those first

• Finding workflow – your AppSec Pipeline
• Figure this out and standardize / optimize

• Create systems which can grow organically
• App is never done, its just created to easily be
 added to over time
• Finding blocks become templates for next time

• Learn to talk “dev”

Key Take Aways

The Phoenix Project
The Practice of Cloud System

Administration

Gene Kim, Kevin Behr and

George Spafford

Books to read

Thomas A. Limoncelli, Strata R. Chalup,

Christina J. Hogan

Questions?

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

