
Security DevOps

staying secure in agile projects

Christian Schneider
@cschneider4711

`whoami`
» Software Developer, Whitehat Hacker & Trainer
» Freelancer since 1997
» Focus on JavaEE & Web Security
» Speaker at Conferences
» @cschneider4711

www. 
mail@｝Christian-Schneider.net

Why Security DevOps?

» Keep up with rollout pace in agile projects
» Automate certain checks as best as possible

within the build-chain
» Early feedback to Devs

» Does not remove the pentest requirement!
» Aims to free pentesters’ time to hunt more

high-hanging bugs

Different levels of "Security
DevOps" integration…
» Security DevOps Maturity Model (SDOMM)
» Can be seen as some automation tips

within OpenSAMM’s security practices
» Verification: Security Testing
» Verification: Code Reviews

» Allows to define a RoadMap for projects
implementing Security DevOps

four axes each with four
belts as incremental steps

implicit master

… what levels will we cover?

Four different axes

4 3 2 1 1 2 3 4

4

3

2

1

1

2

3

4

Dynamic Depth

Intensity

Static DepthConsolidation

Four different axes

4 3 2 1 1 2 3 4

4

3

2

1

1

2

3

4

Dynamic Depth

Intensity

Static DepthConsolidation

This talk covers two of them

4 3 2 1 1 2 3 4

4

3

2

1

1

2

3

4

Dynamic Depth

Intensity

Static DepthConsolidation

Let’s explore these axes …

» … by showing how to implement this with
OpenSource solutions used in the  
Security & Development domains.

Axis of "Dynamic Depth"

How deep are dynamic scans executed
within a Security DevOps CI chain?  

i.e. "where" are dynamic  
security tests applied?

Axis "Dynamic Depth": Level 1
Scanning of public attack surface (pre-auth):

• Spidering of UI layer

• No requirement to authenticate scanner with target

• Easy integration of scanner(s) in nightly build as post-step

• "Throw tool at it (in CI-chain) and see what it generates…"

ZAP in SecDevOps?
"OWASP ZAP" features relevant for Security DevOps integration:

• Passive & active scanning

• Headless operation mode / daemon

• REST-API (with several language bindings as pre-built clients)

• Scriptable

• CLI

ZAP + Jenkins = SecDevOps?
"OWASP ZAP" (spider & scanner) + Jenkins plugin "ZAProxy"

• Allows us to "Spider & Scan" as step in build job via Jenkins plugin

• Point plugin config to URL of integration system to test

• Plugin saves HTML-report in project’s job for inspection

• Best as separate Jenkins job to run during nightly build (duration)

• Use different ZAP proxy ports for different builds to allow  
parallel execution of different project build jobs

Jenkins Plugin "ZAProxy": ZAP Startup

Jenkins Plugin "ZAProxy": ZAP Scan

Arachni in SecDevOps?
"Arachni Scanner" features relevant for Security DevOps integration:

• Passive & active scanning (Proxy / Spider)

• Uses internally a headless browser-cluster (for apps with lots of JS)

• Automation?

• CLI + RPC API

• Web-UI (helpful when permanently running as server)

Arachni + Jenkins = SecDevOps?
"Arachni Scanner" + Jenkins CLI step in build

• Start in build job as CLI step and point to URL of system under test

• Generate HTML report and place into workspace for inspection

• Better execute within nightly build job (due to duration)

BDD-Security in SecDevOps?
BDD-based framework for functional and technical security tests:

• Technical security tests (i.e. check against XSS, SQL-Injection, XXE, etc.)

• uses ZAP as scanning engine (among others)

• Functional security tests (i.e. check UserA can’t access data from UserB)

• Tightly integrates with Selenium based app navigation workflows

• Uses JBehave for G/W/T stories & reporting

• Can run within CI (Jenkins, etc.) due to JBehave or as JUnit tests

BDD-Security Story: Scan for XSS

Gauntlt in SecDevOps?
BDD-based framework for executing many security tools/scanners:

• Integrates scanners like Arachni, ZAP, sqlmap, etc.

• Easy to integrate "your custom scanner tool" with Gauntlt as well

• Allows to call different scan polices via BDD-stories (G/W/T)

• Integration with Jenkins (or other build servers) by either

• Linking Gauntlt’s HTML report to build, or by

• modifying how Gauntlt calls Cucumber to produce JUnit output

Axis "Dynamic Depth": Level 2
Scanning of authenticated parts (= "post-auth") via UI layer

• Properly maintaining sessions

• Logout-detection & automatic re-login

• Different users / roles

• Spider & scan post-auth 

Handling of hardening measures of application under test

• CSRF-Tokens, etc.

Guide ZAP into Post-Auth in CI
Use ZAP manually (1x) to configure "Context": Auth, RegExps for Logged-In/
Out Indicators, Users etc. + save as "ZAP Session-File" (could be in code repo)

• use that "Session-File" from code repo as starting point of scan  
(loaded as ZAP session during build job).  
Note: Current version of ZAP has a bugfix pending for loading creds from session file

One can set these auth values and/or additional data via ZAP’s REST-API  
during each build before scan starts (from Jenkins/Maven/…)

• use that to define current active session etc. during scan

Also Scripts in JavaScript or Zest can be registered in ZAP context  
to programmatically give authentication to ZAP

Login config example within ZAP

ZAProxy Jenkins Plugin: ZAP session use

Guide Arachni into Post-Auth
Give authentication infos to Arachni (Auth, Logged-In Indicators, Users)

• Use Arachni "autologin" plugin to specify via command line

• Login URL, formfield names, credentials, logged-in indicator, excludes

• Alternatively write custom ruby script for "login_script" plugin

• Individual custom login logic possible

• Logged-In indicators (RegExp) to know when to re-login

 

Login config example within Arachni (used in CI)

./arachni  
 --plugin=autologin:  
 url=https://example.com/login.action,  
 parameters='j_username=foo&j_password=bar',  
 check='Logout'  
 --scope-exclude-pattern=logout.action  
 https://example.com/

Or individual ruby script if more custom login logic required…

Eventually also --session-check-url & --session-check-pattern

https://example.com/

Guide BDD-Security into Post-Auth
Use Selenium to navigate through the login process

• Based on excellent integration of BDD-Security with Selenium

• Separate app navigation code (Selenium) from Security testing code

• Use Selenium class (that handles login) within BDD stories

• Perform further spidering & active scanning (through ZAP) post-auth

 public class ShopApplicationScanHelper
 extends WebApplication implements ILogin {

 // ... integrates with BDD-Security via parent class & interface ...

 }

 public class ShopApplicationScanHelper
 extends WebApplication implements ILogin {

 @Override
 public void openLoginPage() {

 }

 @Override
 public void login(Credentials credentials) {

 }

 @Override
 public boolean isLoggedIn(String role) {

 }

 public class ShopApplicationScanHelper
 extends WebApplication implements ILogin {

 @Override
 public void openLoginPage() {
 driver.get(Config.getInstance().getBaseUrl() + "customer/login");
 verifyTextPresent("Login");
 }

 @Override
 public void login(Credentials credentials) {
 UserPassCredentials creds = new UserPassCredentials(credentials);
 driver.findElement(By.id("username")).clear();
 driver.findElement(By.id("username")).sendKeys(creds.getUsername());
 driver.findElement(By.id("password")).clear();
 driver.findElement(By.id("password")).sendKeys(creds.getPassword());
 driver.findElement(By.name("_action_login")).click();
 }

 @Override
 public boolean isLoggedIn(String role) {
 if (driver.getPageSource().contains("My Account")) {
 return true;
 } else {
 return false;
 }

Axis "Dynamic Depth": Level 3
Separate scanning of different application layers / backends

• Scan internal WebServices (e.g. SOAP / REST) = directly scan backends

• Detect and scan parameter positions within XML, JSON, …

• Scan from "within" the different application’s layers

• IAST with distributed agents & instrumentation aims into that direction

• At least one simple step in that direction:

• Use the proxy also between your backend service calls

Backend scans with ZAP
How to achieve this with ZAP?

• ZAP operates as proxy server: place it between backend calls

• ZAP can inject payloads in observed XML tags/attributes & JSON fields

• Capture service call traffic in integration test during CI while either

A. executing service tests that directly access the service endpoint, or

B. frontend UI tests execute service backend calls indirectly

• Automatically scan as new requests are seen: "ATTACK Mode"

Also keep an eye on an alpha-level SOAP-Scanner ZAP addon

Backend scans with Arachni
How to achieve this with Arachni?

• Arachni can also operate as proxy: place it between backend calls

• Use passive proxy plugin to "train" Arachni of the XML / JSON
requests

• New addition in v1.1 to extract XML / JSON input vectors from it

• Use that collected input vector data to feed the active scan for  
the observed requests

Axis "Dynamic Depth": Level 4
Targeted scanning of individual forms / wizards (UI) and service layers

• More individualised workflow coverage (not just simple spidering)

• Business-logic compliant usage patterns & inputs

• "fill shopping cart followed by checkout process"

• "access backend WebServices in special order to test workflow", etc.

• Custom coded security tests tailored to the application

ZAP with special workflows (1/3)

Many ways exist…

The simplest one could be:  
Re-use existing UI tests (Selenium, …)

• Proxy this traffic through ZAP in "ATTACK-Mode" 
(in security test phase of build)

• Optionally use ZAP Attack-Policies to  
specify/limit certain attack types

ZAP with special workflows (2/3)
A more customised handling of individual workflows can be achieved:

Re-use & enhance existing "UI test code" at the desired 
workflow steps with calls to ZAP’s (REST)-API ordering attacks

• Basically it’s like Unit-Test code that uses Selenium along with  
with ZAP-Calls at the proper positions in application workflow

• Type of "ordered attacks" can again be defined via policies

• Start ZAP as Daemon from Jenkins via plugin

public class ShopApplicationTest { // = regular JUnit unit test

 @Before 
 public void setup() {

 }

 @Test 
 public void testShippingAddressStep() {

 

 }

 @Test 
 public void testBillingAddressStep() {

 }

}

public class ShopApplicationTest { // = regular JUnit unit test

 @Before 
 public void setup() {
 // 1. start new proxy session in running ZAP (via REST-API call)
 // 2. create Selenium driver (proxying through running ZAP)
 }

 @Test 
 public void testShippingAddressStep() {

 

 }

 @Test 
 public void testBillingAddressStep() {

 }

}

public class ShopApplicationTest { // = regular JUnit unit test

 @Before 
 public void setup() {
 // 1. start new proxy session in running ZAP (via REST-API call)
 // 2. create Selenium driver (proxying through running ZAP)
 }

 @Test 
 public void testShippingAddressStep() {
 // 1. use Selenium to fill shopping cart
 // 2. use Selenium to proceed to checkout
 // 3. use Selenium to provide reasonable shipping address data

  

 }

 @Test 
 public void testBillingAddressStep() {

 }

}

public class ShopApplicationTest { // = regular JUnit unit test

 @Before 
 public void setup() {
 // 1. start new proxy session in running ZAP (via REST-API call)
 // 2. create Selenium driver (proxying through running ZAP)
 }

 @Test 
 public void testShippingAddressStep() {
 // 1. use Selenium to fill shopping cart
 // 2. use Selenium to proceed to checkout
 // 3. use Selenium to provide reasonable shipping address data
 // 4. set attack policy (types & strength) in running ZAP (API)
 /* 5. call ZAP (API) to actively scan the last seen URL

 (optionally define parameter excludes via API  
 or ZAP "input vector scripts" if custom input format) */

 }

 @Test 
 public void testBillingAddressStep() {

 }

}

See https://github.com/continuumsecurity/zap-webdriver  
for a great working example of Selenium ZAP integration

public class ShopApplicationTest { // = regular JUnit unit test

 @Before 
 public void setup() {
 // 1. start new proxy session in running ZAP (via REST-API call)
 // 2. create Selenium driver (proxying through running ZAP)
 }

 @Test 
 public void testShippingAddressStep() {
 // 1. use Selenium to fill shopping cart
 // 2. use Selenium to proceed to checkout
 // 3. use Selenium to provide reasonable shipping address data
 // 4. set attack policy (types & strength) in running ZAP (API)
 /* 5. call ZAP (API) to actively scan the last seen URL
 (optionally define parameter excludes via API  
 or ZAP "input vector scripts" if custom input format) */
 }

 @Test 
 public void testBillingAddressStep() {
 // same idea as above ... just continue with the pattern
 }

}

https://github.com/continuumsecurity/zap-webdriver

ZAP with special workflows (3/3)
Alternatively "train" ZAP about the workflow by recording Zest scripts

• Keep an eye on "Sequence Scanning" alpha-level ZAP addon

• Still alpha-level (as of May 2015), but interesting approach

Use Selenium to further drive BDD-Security initiated checks:

• Selenium-based test code navigates application workflows

• This code is integrated with BDD (via Java interfaces), so that:

• BDD-Security stories can use that code to navigate  
and generate traffic

• This generated traffic will be scanned by ZAP via BDD

BDD with special workflows

If no Selenium test code exists?
Simply give developer teams access to ZAP to (at least) pre-seed the scanner:

• Developer teams use browser to navigate app workflows while proxying

• Thereby seed the ZAP session(s) with navigation nodes/workflows

• Save the ZAP session(s) and check-in into SCM (Git, SVN, …)

• Point the Jenkins ZAP plugin to the saved ZAP session(s) as starting point

• Devs can add to this list of URLs for ZAP with each new UI

BTW: ZAP is also available as Docker image…

Axis of "Static Depth"

How deep is static code analysis performed  
within a Security DevOps CI chain?  

i.e. "where" are static  
security tests applied?

Axis of "Intensity"

How intense are the majority of the executed attacks
within a Security DevOps CI chain?  

i.e. "what" is being  
checked for?

Axis of "Consolidation"

How complete is the process of handling findings
within a Security DevOps CI chain?  

i.e. "how" are the  
results used?

Axis "Consolidation": Level 1
Generate human-readable (HTML) reports from tools and link them in Jenkins

• All relevant mentioned static and dynamic scanners generate HTML reports

• Collect and publish them in Jenkins build: via Jenkins "HTML Publisher Plugin"

Use simple criteria to "break the build" on heavy findings (ok, at least "unstable")

• Dependency-Check, BDD-Security (with the JBehave-stories), FindSecurityBugs
(via Sonar when rated as blocker), Arachni (via Gauntlt execution with BDD-
like stories), etc. all have capabilities to automatically flag the build

• For others: at least do a simple log parse from Jenkins  
"Log Parser Plugin" to flag the build as unstable and/or broken

Jenkins "HTML Publisher Plugin":
Configuration of HTML reports to link

Jenkins "HTML
Publisher Plugin":
Result in build

Axis "Consolidation": Level 2
Custom logic to make build unstable and/or broken depending on

• Type of vulnerability (CWE or WASC or …)

• Confidence level (firm vs. tentative)

• Severity ranking (high risk)

Provide useful remediation info to developers

Respect suppression mechanisms to rule out false positives

Flagging builds from reports
How (from within a CI job)?

• Most scanners also emit XML reports that can be parsed

• Often a simple XPath count is just fine

• Alternatively fetch the results by accessing the scanner’s API

• Be sure to only break build with (new?) findings of  
high severity and high confidence !!!

• Less is more (when it comes to automation)…  

Axis "Consolidation": Level 3
Consolidation goals:

• Consolidate & de-duplicate findings from different  
scanner reports (with better false positive handling)

• Push consolidated findings into established bug-tracker  
(known to devs)

• Delta analysis & trends over consolidated data sets

ThreadFix as result consolidator
Use a local ThreadFix server, which imports native scanner outputs

• does the heavy lifting of consolidation & de-duplication

• pushes findings toward bug-tracker and IDE (via plugins)

• process can be customised using it’s own REST-API

• ThreadFix imports findings of ZAP, Arachni, FindBugs, Brakeman, etc.

Axis "Consolidation": Level 4
Measure the concrete code coverage of your security testing
activities

• Find untested "white spots"

• Derive where static checks and code reviews should  
focus more to compensate

Code coverage analysis
Use "OWASP Code Pulse", which instruments your Java app via agent

• collects coverage data during dynamic security testing scans

• generates reports ("code treemaps") of coverage

Code Treemap of dynamic scan coverage
Bildquelle: OWASP Code Pulse

Thank you very much!

Links
OWASP ZAP https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
ZAP Selenium Demo https://github.com/continuumsecurity/zap-webdriver
ZAP Jenkins Plugin https://wiki.jenkins-ci.org/display/JENKINS/ZAProxy+Plugin
BDD-Security http://www.continuumsecurity.net/bdd-intro.html
Arachni http://www.arachni-scanner.com
OWASP Dependency Check https://www.owasp.org/index.php/OWASP_Dependency_Check
OWASP Dependency Track https://www.owasp.org/index.php/OWASP_Dependency_Track_Project
FindSecurityBugs http://h3xstream.github.io/find-sec-bugs/
FindSecurityBugs-Cloud https://code.google.com/p/findbugs/wiki/FindBugsCloudTutorial
retire.js http://bekk.github.io/retire.js/
ScanJS https://github.com/mozilla/scanjs
Jenkins Log Parser Plugin https://wiki.jenkins-ci.org/display/JENKINS/Log+Parser+Plugin
ThreadFix http://www.threadfix.org
OWASP Code Pulse https://www.owasp.org/index.php/OWASP_Code_Pulse_Project
Seccubus https://www.seccubus.com
vulndb https://github.com/vulndb/data
fuzzdb https://code.google.com/p/fuzzdb/ 
radamsa https://code.google.com/p/ouspg/wiki/Radamsa  

 Interested in more web security stuff?
 Visit my Blog: www.Christian-Schneider.net

 @cschneider4711
Bildquelle: dreamstime.com

http://www.Christian-Schneider.net
http://dreamstime.com

