A web application firewall for nginx

Thibault Koechlin (nbs-system)

OWASP AppSecEU 15

Amsterdam, The Netherlands

Why Naxsi

Web application

TRLLETRINTTY A [
GED BEEDE GNOE NN mmEEEEewm BEEE
piH B H
| |

OWASP AppSecEU 15

Amsterdam, The Netherlands

Not always possible :
* Lack of skill
* Application is too « critical »

OWASP AppSecEU 15

Amsterdam, The Netherlands

, ..c_.-lilll.l_ll
SAEEEEEN

Fallback : WAFs ? (back in 2011 \o/)

Commercial Wafs :
* Very uneaven

« Not really affordable for small companies with
big infrastructures

Opensource WAFs :
« No waf at that time for nginx
« Not found of complex signatures:)

OWASP AppSecEU 15

Amsterdam, The Netherlands

Why naxsi

As a pentester :

* Web application still the most vulnerable and
exposed part of the perimeter

As a hoster :

* Website owners, even when web is at the core
of business, lacks awareness ... and get
owned

As a security « consultant » :
Why u no protect ?! * CISO/Admin still frightened of side effects

* Open-source WAFs only seen in very « tech
savy » companies

TN T
HE HE BN T
s TRHRR OWASP AppSecEU 15

Amsterdam, The Netherlands

Introducing naxsi

OWASP AppSecEU 15

Amsterdam, The Netherlands

. Rather than detecting « complex » signatures, will focus on « tokens » :
_<>0=%...

. Tokens presence leads to score increase — action

. Small code base :
_core (~4k) C
_learning tools (~1.3k) python

Integrates libinjection as well !

OWASP AppSecEU 15

Amsterdam, The Netherlands

Workflow

* Generated logs are
pushed into ES

 Data is relevant for

monitoring and trafic F“M
Inspection :

NGINX+NAXSI —— | LOGS (syslogffiel.)
R

NXAPI

EVENTS I

* Nxapi helps the
admin generate

whitelists

Whitelist
TEMPLATES

[[|
L (@)
T ETRINT Ty [

bana daghbosrd ﬁ

@

OWASP AppSecEU 15
ds

Amsterdam, The Netherlan

I I o o
AEEEESEAEEEEEENEEE =N Illllllllllllil.i:ﬁ;.

OWASP AppSecEU 15

Amsterdam, The Netherlands

* Detection rule :

MainRule "str:(" "mz:ARGS|URL|BODY|$HEADERS_VAR:cookie" "s:$SQL:4,$XSS:8" id:1010;

* CheckRule :

CheckRule "$SQL >= 8" BLOCK; #(DROP|LOG)

 Whitelist :

BasicRule wl:1010 "mz:$HEADERS_VAR:cookie|SURL:/x" ;

OWASP AppSecEU 15

Amsterdam, The Netherlands

Learning & tools

OWASP AppSecEU 15

Amsterdam, The Netherlands

YN NY/(|nmr-| NiadEEEEEEEEEEEEE
1I\Ud M1 UYUWLT o ENEE

« Relying on (ES) injected logs
« Suggests whitelists (nxapi) :
— Based on templates (application specific)
— Statistics (number of occurrences, number of peers ...)

« Associated events are then « tagged » into
database

OWASP AppSecEU 15

Amsterdam, The Netherlands

Learning process

 Naxsi relies on two main modes of
operation « learning » / « blocking »

— During learning phases, exceptions are
loggued but not blocked

— Once learning is over, naxsi can be set to
blocking mode (bad trafic is dropped)

: : || T @

OWASP AppSecEU 15

sterdam, The Netherlands

More Into learning

Learning is the biggest downside, however :

* When it comes to « market » apps,
whitelists are very predictable (templates!)
* For home-made apps, several options :
— Relying on statistics
— Relying on « trusted » trafic

TRLLETRINTTY A [
Hil BUE EH QN EEEaa HE

@

OWASP AppSecEU 15

eeeeeeeeeeeeeeeeeeeeeeee

More into learning

Nxtool templates (dnyamic)

{ " msg" : "Magento checkout page (BODY|NAME)",

"?uri” : "/checkout/onepage/.*",
"zone" : "BODY|NAME",

"id" : "1310 OR 1311"}

Naxsi templates (static)

BasicRule wl:1310,1311 "mz:$URL_X:*/checkout/onepage/savebilling/$|BODY|
NAME",

OWASP AppSecEU 15

Amsterdam, The Netherlands

I

* <insert cool kibana dashboard cap here>

OWASP AppSecEU 15

Amsterdam, The Netherlands

Tips & Tricks

OWASP AppSecEU 15

Amsterdam, The Netherlands

Al \JAI BIWIG@ || HEIIINE 1LV ERERS

Combined with nginx scripting :

if (fremote_addr ="1.2.3.4") {
set $naxsi_flag_learning 0;
set $naxsi_libinjection_sql 1 ;

}

* Learning only for some specifics URI(s)
* Learning only from some IP(s)
* Learning if the visitor fits some critetria

OWASP AppSecEU 15

Amsterdam, The Netherlands

Tweaks around learning

Naxsi can be instructed to drop requests
despite learning mode :
* Libinjection

CheckRule "$LIBINJECTION_XSS >= 8" DROP;

CheckRule "$LIBINJECTION_SQL >= 8" DROP;

¢ D OX' . rU I eS http://spike.nginx-goodies.com/rules/

CheckRule "$UWA >= 8" DROP;

: BE B E N mu e s B8 @

Y HE BN EEEnnEE
- HALLL OWASP AppSecEl 15

Amsterdam, The Netherlands

http://spike.nginx-goodies.com/rules/

Feedback from real life :

* Rules syntax stay very simple :

— Lowers the risk of breach while playing
around rules

— Lowers the needed skill to manage the rules

* Naxsi itself is very simple :
— Low ressources

— Specific cases might become problematic :
content legitimately passed in base64

[| -
] 0'

IR RITTY [
OWASP AppSecEU 15

eeeeeeeeeeeeeeeeeeeeeeee

A el) | EEEEEEEEEE 51!1__“__1_"

. As been tested in several occasions :
— Real life (a lot)
— Audited by 3rd parties
— Challenges

« Used to protect some website under « persistent » attacks

« Used to protect at least one very large website (1Tb+)

OWASP AppSecEU 15

Amsterdam, The Netherlands

What's next,
Q&A

Thanks for your attention !

OWASP AppSecEU 15
Amsterdam, The Netherlands

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

