
Jason Haddix & Greg Patton

OWASP AppSecEU | May 21, 2015

The API Assessment Primer

Agenda

• Introduction

• Why API security matters

• Assessment considerations

• Common API vulnerabilities

• Takeaways

2

About me

Greg Patton

SAST Manager, HP Fortify on Demand

• Manage the static analysis testing team for HP FoD

• Nearly ten years of DAST experience with web & mobile apps

• Attended my 1st OWASP meeting on June 7, 2007 (Houston,

TX)

hacker@hp.com

3

Why API Security Matters

APIs are everywhere

• Mobile apps

• Internet of Things (IoT)

• Service Oriented

Architecture (soa)

• Enterprise thick-client

apps

5

API insecurity

• New surface area = dangerous surface area

• Many API developers haven’t had security training

• Many assume that because back ends aren’t visited by

end-users they are more secure (obscurity assumption)

6

API insecurity

Most APIs are vulnerable

– Analyzing any given API is likely to yield significant

vulnerabilities

– The newer, more eager the shop – the higher the chance of

issues

7

API Assessment Considerations

API testing approach

• Acquire information

• Map the API

• Capture runtime traffic

• Use automated scanners

• Manually test, test, test

9

What to collect pre-assessment

Ask customer for

• Source code

– Static analysis & review

• Documentation

– Regular user

– Admin documentation

• Valid request data

– Known-good param values

– Order of function calls

10

Core toolset

Web proxy / HTTP editor

• ZAP proxy

• BURP suite pro

Web service testing tools

• SoapUI

• WSAttacker

• HP WebInspect

• Postman

Network capture tools

• Wireshark

• Echo Mirage

Browser extensions

• Chrome: Advanced Rest Client

• Firefox: Hackbar

11

API Mapping

Fully map the API, listing

all methods and functionality

at the start of an

assessment

Examine:

– asmx

– /help & help docs

– WSDL (.NET)

– WADL (Java)

– Doxegen & help docs

Google

– inurl:wsdl site:example.com

Explore

– runtime operations

12

API Mapping | Testing

Try different HTTP Methods

• Don’t assume other verbs won’t work

• May discover hidden functionality

13

API Mapping | Testing

Try different content types and executions

• JSON vs. XML vs. Text

• REST vs. XML

14

Common API Vulnerabilities

Common API Vulnerabilities

Broken Authentication &

Session Management

Information Leakage

Not-So-Hidden Functionality

Lack of Access Control

Tampering & Trust Flaws

Lack of Insecure Transport

Injection Flaws

Failure to Protect Keys

16

Authentication & Session | Concerns

• No authentication

• Insecure framework

implementation

– openID

– oAuth

• Non-expiring session tokens

• Weak password complexity

• Lack of account lockout

• Lack of logout/session expiration

mechanism

17

Authentication & Session | Testing

• Attempt to send requests with no

authentication

• Review authentication scheme

or framework

• Attempt to use simple

passwords

• Attempt to use old session

tokens

• Verify logout functionality truly

expires sessions

• Weak password complexity

• Attempt to lock account

18

Authentication & Session | Protections

• Require authentication

• Require strong password

• Use up-to-date

frameworks

– Latest version of oAuth,

etc.

• Ensure there is a way to

logout / expire sessions

• Pay special attention to

sensitive operations

• Use rate limiting to guard

again Brute Force abuse

19

Information Leakage | Concerns

Often APIs respond with

more data than required

• Apps returning all records

instead of only needed or

requested records

– Particularly common in

mobile applications

• Lack of data limiters

– No limits on the number of

requests a user can send

– Brute force all records

20

Information Leakage | Concerns

2014 RSA Mobile App - Exposed Personal Data

• App designed for connecting with conference activities,

viewing schedules, venue maps, etc.

• App used a web API to download information about

every registered user of the application

• http://blog.ioactive.com/2014/02/beware-your-rsa-

mobile-app-download.html

21

Information Leakage | Testing

• Review API responses

– Do they return more data

than what was requested?

• Try wildcard values

– * , %, ?, space, etc.

• Review error messages

– Do they reveal technical

information?

– Do they reveal

enumeration flaws?

22

Information Leakage | Testing

23

Information Leakage | Protections

• Only return requested &

needed data

• Review responses for

sensitive information

• Review error messages

24

Hidden functionality | Concerns

API hidden functionality flaws are largely introduced due

to faulty developer assumptions, i.e. not thinking like an

attacker

• assume obscurity

• assume users will use functions only as intended

25

Hidden functionality | Testing

• Test different HTTP verbs

– GET, POST, PUT, DELETE,

etc.

• Check for API verbs

– edit user, add user, delete user

• Review WSDLs, etc. for

functionality not called at

runtime

• Fuzz to find hidden

operations

– https://www.owasp.org/index.p

hp/OWASP_SecLists_Project

 26

Hidden functionality | Protections

• Ensure only required

methods are exposed

• Ensure authentication

scheme protects sensitive

functions

27

Lack of access controls | Concerns

APIs don’t always verify the

requestor is authorized for

the target object

• Indirect Object

References

28

Tampering & trust | Concerns

• Tampering with

commands

– Bypass client-side controls

– Tampering with queries

• Incoming & outgoing data

• Malicious

upload/download

29

Lack of access

controls

Tampering & trust

30

| Testing

Intercept & modify requests

– Modify parameters to

attempt to access other

data

• Account numbers, User

IDs, Order numbers, etc.

Intercept & modify

responses

– Change the content

available in mobile apps

– Bypass controls

31

Lack of access

controls

Tampering & trust

| Testing

32

Lack of access

controls

Tampering & trust

| Testing

• Validate Parameters

• Test for proper protection

of sensitive information

• Review who has access

to sensitive information

• Ensure only authorized

users have access to

sensitive information

33

Lack of access

controls

Tampering & trust

| Protections

Transport security flaws | Concerns

APIs often lack sufficient

protection of

confidentiality and

integrity of data in transit.

• Devices connected to

untrustworthy networks

• Sensitive data transmitted

in clear-text

– No encryption

– Encryption not enforced

• Poorly implemented

SSL/TLS

34

Transport security flaws | Testing

• Review network traffic

• Check for cipher flaws &

versions

– SSLdigger, SSLScan, &

other SSL testing tools

35

Transport security | Testing

36

Transport security | Protections

Ensure data is protected

in transit

• Ensure sensitive data is

never transmitted in

clear-text

• Turn on and enforce

transport encryption

– HTTPS everywhere

37

Injection | Concerns

• SQL injection

• Cross-site sciprting

• Xpath injection

• XML DoS

• XXE – XML external

entity

38

Injection | Testing

• Fuzz all parameters

• Utilize web scanners

• Manually tamper with

requests

• Fuzz parameters and

review results

• https://www.owasp.org/in

dex.php/Projects/OWASP

_SecLists_Project

39

Injection | Protections

40

• Validate all parameters

server-side before

generating output

• Do not assume clients will

adhere to the API

specifications

Key Management | Concerns

• Mobile app binaries

– hardcoded

– in manifest & .plist files

• Thick-client apps

• Online source code

repositories

– GitHub, BitBucket, etc.

41

$2375 Mistake

• Developer accidentally uploaded Amazon S3 keys to

GitHub

– Took them down & deleted all traces within 5 minutes

• Automated bot searching for API keys found them

• Amazon API allows users to spin up EC2 instances

• $2375 bill overnight

http://www.devfactor.net/2014/12/30/2375-amazon-mistake/

• Similar Amazon WS story

https://securosis.com/blog/my-500-cloud-security-screwup

42

http://www.devfactor.net/2014/12/30/2375-amazon-mistake/
http://www.devfactor.net/2014/12/30/2375-amazon-mistake/
http://www.devfactor.net/2014/12/30/2375-amazon-mistake/
http://www.devfactor.net/2014/12/30/2375-amazon-mistake/
http://www.devfactor.net/2014/12/30/2375-amazon-mistake/
http://www.devfactor.net/2014/12/30/2375-amazon-mistake/
https://securosis.com/blog/my-500-cloud-security-screwup
https://securosis.com/blog/my-500-cloud-security-screwup
https://securosis.com/blog/my-500-cloud-security-screwup
https://securosis.com/blog/my-500-cloud-security-screwup
https://securosis.com/blog/my-500-cloud-security-screwup
https://securosis.com/blog/my-500-cloud-security-screwup
https://securosis.com/blog/my-500-cloud-security-screwup
https://securosis.com/blog/my-500-cloud-security-screwup
https://securosis.com/blog/my-500-cloud-security-screwup

Key Management | Testing

• Search for API keys

• Review online source

code repositories for API

Keys

• Run Strings on binaries &

GREP for keys

• Review mobile binaries

– Manifest files

– .plist files

– SQLite Databases

43

Key Management | Protections

“Keys should be kept under

a fake (virtual) rock outside

your front door.” – R.

Grosse

44

Takeaways

Takeaways

Adopt the attacker

mindset

– Think like an attacker while

evaluating your own APIs

– Identify places that

developers likely made

assumptions

– Attempt to take advantage

of those assumptions

– As a developer, think in

terms of abuse vs. just

regular use

46

Takeaways

Go with an absolute least-

privilege approach

– Do not expose any

operations that are not

needed

– Do not expose any data

that is not required

47

Takeaways

Leverage available

resources

– https://www.owasp.org

– OWASP IoT Top 10

• https://www.owasp.org/index.

php/OWASP_Internet_of_Thi

ngs_Top_Ten_Project

– OWASP Mobile Security

Project

• https://www.owasp.org/index.

php/OWASP_Mobile_Security

_Project

 48

https://www.owasp.org
https://www.owasp.org
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Top_Ten_Project
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Top_Ten_Project
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Top_Ten_Project
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Top_Ten_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

Reach out

Greg Patton

hacker@hp.com

http://hp.com/go/fortifyondemand

49

