Bringing Security
Testing to Development

How to Enable Developers to
Act as Security Experts

@

OWASP AppSecEU 15

Amsterdam, The Netherlands

0
E |

« SAP SE

— Business Software Vendor
— Over 68000 employees
— Worldwide development

2 = GC 480-8
sespne

* Myself
— Security Testing Strategist
— Researcher

— Working in the central
Software Security Team

@

OWASP AppSecEU 15

Amsterdam, The Netherlands

De-centralized Secure Development Model

Central Security Expert Team Local Security Experts
« S2DL Owner « Embedded into dev. teams
« Organizes security trainings « Organize local security activities

« Defines product standard ~“Security < Support developers and architects
« Defines risk and threat assessment « Support product owners/responsibles

methods
- Defines security testing strategy Development Teams
« Selects and provides security testing °* Select technologies
tools « Select development model
« Validates products .
« Defines and executes response
process

T T T
E :: EEEEES OWASP AppSecEU 15

Amsterdam, The Netherlands

MOTIVATION

OWASP AppSecEU 15

Amsterdam, The Netherlands

2500 /\

2000
1500 —l
1000 e E

o A"\

500 / —— : ' =
, : = 'o:"
/ n ~ N1z

— _-—
0 =
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
=—4— Code Execution == DoS == Overflow =>e=Memory Corruption =s#=Sq|l Injection
== XSS === Directory Traversal == Bypass something Gain Privileges === CSRF

Source: www.cvedetails.com

OWASP AppSecEU 15

Amsterdam, The Netherlands

AEEEEENEEEEEEEEEE SEEEE

D % Defects
introduced
in this phase

D % Defects
found in
this phase
§ Cost to
repair defect
in this phase

sBnqg jo sbejuacuad

Coding Unit Function Field Post
Test Test Test Felease

Source: Applied Soffware Measurement, Capers Jones, 1938

OWASP AppSecEU 15

Amsterdam, The Netherlands

Core Security
Training

Requirements
Establish Security
Requirements

Create Quality
Gates / Bug Bars

Security & Privacy
Risk Assessment

Establish Design
Requirements

Analyze Attack
Surface

Threat
Modeling

o =——=x] - bt

Implementation

Use Approved
Tools

Deprecate Unsafe
Functions

Static
Analysis

s st e SR,

Verification
Dynamic
Analysis

Fuzz
Testing

Attack Surface
Review

L

Incident
Response Plan

Final Security
Review

Release
Archive

OWASP AppSecEU 15

Amsterdam, The Netherlands

RISK BASED SECURITY TESTING
AS PART OF SAP’S S°DL

OWASP AppSecEU 15
Amsterdam, The Netherlands

\l-=.._ a

" EEEENS

Language Tool Vendor
Others ABAP CVA (SLIN_SEC) SAP
i C/C++ Coverity Coverity
JavaScript, Ruby Checkmarx Checkmarx
Others Fortify HP

* Mandatory since 2010 for all products
* Multiple billons lines analyzed
* Constant improvements:

— tool configuration (e.g., based on feedback from
development, validation, response)

— new tools and methods

OWASP AppSecEU 15

Amsterdam, The Netherlands

1 0
! E |

Client Application

« SAST Advantages

— Early in Development
— Wide range of vuln. Types
— Good fix instructions

« SAST Limitations

— Quality depends on
programming language used

— Usually covers only one layer of
the application stack Backend Systems

Web Browser

Server Application

Runtime Container

OWASP AppSecEU 15

Amsterdam, The Netherlands

1] ,\ I B .. - | I 1 11 1T
e EEEENS iiiiiiiliﬁiﬁiii.

_—
E

Y ANERY ;‘i‘?i—
g A@MN=
.. = i H .

—

« SAST Advantages

— Early in Development
— Wide range of vuln. Types
— Good fix instructions

« SAST Limitations

— Quality depends on
programming language used

— Usually covers only one layer of
the application stack Backend Systems

Web Browser

slication

Runtime Container

OWASP AppSecEU 15

Amsterdam, The Netherlands

« SAST Advantages

— Early in Development
— Wide range of vuln. Types
— Good fix instructions

« SAST Limitations

— Quality depends on
programming language used

— Usually covers only one layer of
the application stack Backenc

OWASP AppSecEU 15

Amsterdam, The Netherlands

« SAST Advantages

— Early in Development
— Wide range of vuln. Types
— Good fix instructions

« SAST Limitations

— Quality depends on
programming language used

— Usually covers only one layer of
the application stack Backenc

OWASP AppSecEU 15

Amsterdam, The Netherlands

Prioritized
SAP Security
Req.

1 O O O O O O O O §

RISK ASSESMENT

(e.g., SECURIM, Threat Modelling, OWASP ASVS)

Implement.
Details

Security

Test Plan

Application
Type

OWASP AppSecEU 15

Amsterdam, The Netherlands

Example: Security Test Plan

 Mobile Device
|mm T » Risk: Attacker might inject JavaScript (XSS)

|
: | » Security Control 1: Use only UI5 controls
i o | | * Assumption: SAP Kapsel with SMP and Afaria
| Storage Mobile App {1 — Test: Static Code Analysis using Checkmarx
| : » Justification: recommended tool
___________________ » Expected Coverage: all client-side JavaScript code
HTTeS O § » Expected Effort: 10min per development day (ramp-up not included)
——T—= « Security Control 2: use only SSL connections with valid certificates
— Test 1: Static Code Analysis for finding non-https connections
Weh Server » iustification: low effort, already included in test for Security Control
(WebServices/Local Fles » Expected Coverage: all client-side JavaScript code
L » Expected Effort: included in effort for scans for Security Control 1
|: :I — Test 2: Manual test with invalid certs (e.g., self-signed, own CA)
\y » Justification: no automated tool available, self-signed certificates
Database allowed during development . .
(Customer financial data) » Expected Coverage: all https connections used for accessing the Web Server
L » Expected Effort: % day towards the end of development

 Web Server / Web Application (...)

OWASP AppSecEU 15

Amsterdam, The Netherlands

ol : e oww)l EE AV WY VAW L iEEEEnE
L A-Jh'ii.“ y i »
T |

—iF B 1

* Mobile Device
B — » Risk: Attacker might inject JavaScript (XSS)

|
i | » Security Control 1: Use only UI5 controls
Yo | | + Assumption: SAP Kapsel with SMP and Afaria
| storage Mobile App {1 — Test: Static Code Analysis using Checkmarx
N | » Result: no issues
» Actual Coverage: all client-side JavaScript code
HTTeS O § » Actual Effort: total effort 2 days (15min per day, instead of expected 10)
——T—— » Security Control 2: use only SSL connections with valid certificates
— Test 1: Static Code Analysis for finding non-https connections
Web Server » Result: exempted one issue
(WebServices/Local Files) » Actual Coverage: all client-side JavaScript code
» Actual Effort: included in effort for scans for Security Control 1
— Test 2: Manual test with invalid certs (e.g., self-signed, own CA)
() » Expected Coverage: all https connections used for accessing the Web Server
» Expected Effort: % day towards the end of development
Ratghese « Web Server / Web Application (...)

(Customer financial data)

OWASP AppSecEU 15

Amsterdam, The Netherlands

Start of development

||
V

Risk

Identification

Release decision

| |
N

Plan Security
Measures

Secure
development

Security
Validation

Security

Security testing Response

*Security awareness #SECURIM

*Secure (Security Risk
programming Identification and
*Threat modelling Managt?ment)
»Security static ¢Data Privacy Impact
analysis Assessment

*Data protectionand *Threat Modeling
privacy

*Security expert

curriculum

*Plan product *Secure eDynamictesting ¢Independent *Execute the security
standard programming sManual testing security assessment response plan
compliance oStatic code scan eExternal security

*Plan security *Code review assessment
features

*Plan security tests

ePlan security
response

OWASP AppSecEU 15

Amsterdam, The Netherlands

Security Validation

» Acts as first customer
* Is not a replacement for security testing during development

« Security Validation
— Check for “flaws” in the implementation of the S?DL

— ldeally, security validation finds:
* No issues that can be fixed/detected earlier

 Only issues that cannot be detect earlier _
(e.g., insecure default configurations, missing security documentation)

« Note, penetration tests in productive environments are different:
— They test the actual configuration
— They test the productive environment (e.g., cloud/hosting)

L RLETT ||O. l'l @
BE AN T
B HEE OWASP AppSecEU 15

Amsterdam, The Netherlands

How to Measure Success

* Analyze the vulnerabillities reported by
— Security Validation
— External security researchers
* Vulnerability not detected by our security testing tools
— Improve tool configuration
— Introduce new tools
* Vulnerability detected by our security testing tools
— Vulnerability in older software release
— Analyze reason for missing vulnerability

T T A0 @
HEH BB BE mEE oo B
i ERE OWASP AppSecEU 15

Amsterdam, The Netherlands

: i ggl_nnnr
| N .

« Analyze the vulnerabillities reported by
— Security Validation
— External security researchers
« Vulnerability not detected by our security testing tools
— Improve tool configuration
— Introduce new tools
* Vulnerability detected by our security testing tools
— Vulnerability in older software release
— Analyze reason for missing vulnerability

Success criteria: Percentage of vulnerabilities not covered by our

security testing tools increases

OWASP AppSecEU 15

Amsterdam, The Netherlands

LESSONS LEARNED

OWASP AppSecEU 15
Amsterdam, The Netherlands

Tt T B I T
AEBNSESENSNNESSE BEESES EEMESESsSsEs@as

* A holistic security awareness program for
— Developers
— Managers

OWASP AppSecEU 15

Amsterdam, The Netherlands

= 0 U IHEEENEENEE R

* A holistic security awareness program for
— Developers
— Managers

* Yes, security awareness is important - but

OWASP AppSecEU 15

Amsterdam, The Netherlands

f'“?“l'l'! !¥1[1'¥.IL[I’[TT 1T F

* A holistic security awareness program for
— Developers
— Managers

* Yes, security awareness is important - but

Developer awareness is even more important!

OWASP AppSecEU 15

Amsterdam, The Netherlands

) = i‘v,:‘_—:niﬁ) --.'!AV.A-_‘L.A.Y.. E
P B IS, "N EsSEN.
AV A U AU BU

Sl

» Building a secure system more difficult than finding
a successful attack.

* Do not expect your developers to become
penetration testers (or security experts)!

nn HHH
ab B BB OWASP AppSecEU 15

== n Amsterdam, The Netherlands

Security Testing for Developers

» Security testing tools for developers, need to
— Be applicable from the start of development
— Automate the security knowledge

— Be deeply integrated into the dev. env,, e.g.,
* IDE (instant feedback)
« Continuous integration

— Provide easy to understand fix recommendations
— Declare their “sweet spots”

: : || AT @

OWASP AppSecEU 15

Amsterdam, The Netherlands

Collaborate!

Security experts need to collaborate with
development experts to

— Create easy to use security APIs
(ever tried to use an SSL API securely)

— Create languages and frameworks that
make it hard to implement insecure systems

— Explain how to program securely

: : || HE AH nnE pp BB

OWASP AppSecEU 15

Amsterdam, The Netherlands

CONCLUSION

OWASP AppSecEU 15
Amsterdam, The Netherlands

Conclusion

« Secure software development is a

— Prerequisite for the secure and compliant operation:
We need SecDevOps!

— Risk of operating and maintaining IT systems

e Security requires an end-to-end approach

— Training of developers, architects, product owners
— Security testing during development

— Validation of your security testing efforts

— Maintenance and security patch management

 Developers are your most important ally
- Make life easy for them

OWASP AppSecEU 15

Amsterdam, The Netherlands

B

e

Contact Detalls:

« Achim D. Brucker

www.brucker.ch
achim.brucker@sap.com

« Stephen Hookings
stephen.hookings@sap.com

 Dimitar Yanev
dimitar.yanev@sap.com

@

OWASP AppSecEU 15

Amsterdam, The Netherlands

Bibliography

e http://www.sap.com/security

« Ruediger Bachmann and Achim D. Brucker. Developing
secure software: A holistic approach to security testing.
Datenschutz und Datensicherheit (DuD), 38(4):257-261,
April 2014.
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014

« Achim D. Brucker and Uwe Sodan. Deploying static
application security testing on a large scale. In Stefan
Katzenbeisser, Volkmar Lotz, and Edgar Weippl, editors,
Gl Sicherheit 2014, volume 228 of Lecture Notes in
Informatics, pages 91-101. GI, March 2014.

http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014

OWASP AppSecEU 15

Amsterdam, The Netherlands

http://www.sap.com/security
http://www.sap.com/security
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014

