Bringing Security
Testing to Development

How to Enable Developers to
Act as Security Experts

@

OWASP AppSecEU 15

Amsterdam, The Netherlands




0
E |

« SAP SE

— Business Software Vendor
— Over 68000 employees
— Worldwide development
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* Myself
— Security Testing Strategist
— Researcher

— Working in the central
Software Security Team
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De-centralized Secure Development Model

Central Security Expert Team Local Security Experts
« S2DL Owner « Embedded into dev. teams
« Organizes security trainings « Organize local security activities

« Defines product standard ~“Security < Support developers and architects
« Defines risk and threat assessment « Support product owners/responsibles

methods
- Defines security testing strategy Development Teams
« Selects and provides security testing °* Select technologies
tools « Select development model
« Validates products .
« Defines and executes response
process
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D % Defects
introduced
in this phase

D % Defects
found in
this phase
§ Cost to
repair defect
in this phase
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Core Security
Training

Requirements
Establish Security
Requirements

Create Quality
Gates / Bug Bars

Security & Privacy
Risk Assessment

Establish Design
Requirements

Analyze Attack
Surface

Threat
Modeling
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Implementation

Use Approved
Tools

Deprecate Unsafe
Functions

Static
Analysis
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Verification
Dynamic
Analysis

Fuzz
Testing

Attack Surface
Review
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Incident
Response Plan

Final Security
Review

Release
Archive
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RISK BASED SECURITY TESTING
AS PART OF SAP’S S°DL
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Language Tool Vendor
Others ABAP CVA (SLIN_SEC) SAP
i C/C++ Coverity Coverity
JavaScript, Ruby Checkmarx Checkmarx
Others Fortify HP

* Mandatory since 2010 for all products
* Multiple billons lines analyzed
* Constant improvements:

— tool configuration (e.g., based on feedback from
development, validation, response)

— new tools and methods
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Client Application

« SAST Advantages

— Early in Development
— Wide range of vuln. Types
— Good fix instructions

« SAST Limitations

— Quality depends on
programming language used

— Usually covers only one layer of
the application stack Backend Systems

Web Browser

Server Application

Runtime Container
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« SAST Advantages

— Early in Development
— Wide range of vuln. Types
— Good fix instructions

« SAST Limitations

— Quality depends on
programming language used

— Usually covers only one layer of
the application stack Backend Systems

Web Browser

slication

Runtime Container
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Prioritized
SAP Security
Req.
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RISK ASSESMENT

(e.g., SECURIM, Threat Modelling, OWASP ASVS)

Implement.
Details

Security

Test Plan

Application
Type
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Example: Security Test Plan

 Mobile Device
|mm T » Risk: Attacker might inject JavaScript (XSS)

|
: | » Security Control 1: Use only UI5 controls
i o | | * Assumption: SAP Kapsel with SMP and Afaria
| Storage Mobile App {1 — Test: Static Code Analysis using Checkmarx
| : » Justification: recommended tool
___________________ » Expected Coverage: all client-side JavaScript code
HTTeS O § » Expected Effort: 10min per development day (ramp-up not included)
——T—= « Security Control 2: use only SSL connections with valid certificates
— Test 1: Static Code Analysis for finding non-https connections
Weh Server » iustification: low effort, already included in test for Security Control
(WebServices/Local Fles » Expected Coverage: all client-side JavaScript code
L » Expected Effort: included in effort for scans for Security Control 1
|: :I — Test 2: Manual test with invalid certs (e.g., self-signed, own CA)
\y » Justification: no automated tool available, self-signed certificates
Database allowed during development . .
(Customer financial data) » Expected Coverage: all https connections used for accessing the Web Server
L » Expected Effort: % day towards the end of development

 Web Server / Web Application (...)
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* Mobile Device
B — » Risk: Attacker might inject JavaScript (XSS)

|
i | » Security Control 1: Use only UI5 controls
Yo | | + Assumption: SAP Kapsel with SMP and Afaria
| storage Mobile App {1 — Test: Static Code Analysis using Checkmarx
N | » Result: no issues
» Actual Coverage: all client-side JavaScript code
HTTeS O § » Actual Effort: total effort 2 days (15min per day, instead of expected 10)
——T—— » Security Control 2: use only SSL connections with valid certificates
— Test 1: Static Code Analysis for finding non-https connections
Web Server » Result: exempted one issue
(WebServices/Local Files) » Actual Coverage: all client-side JavaScript code
» Actual Effort: included in effort for scans for Security Control 1
— Test 2: Manual test with invalid certs (e.g., self-signed, own CA)
( ) » Expected Coverage: all https connections used for accessing the Web Server
» Expected Effort: % day towards the end of development
Ratghese « Web Server / Web Application (...)

(Customer financial data)
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Start of development

||
V

Risk

Identification

Release decision

| |
N

Plan Security
Measures

Secure
development

Security
Validation

Security

Security testing Response

*Security awareness  #SECURIM

*Secure (Security Risk
programming Identification and
*Threat modelling Managt?ment)
»Security static ¢Data Privacy Impact
analysis Assessment

*Data protectionand *Threat Modeling
privacy

*Security expert

curriculum

*Plan product *Secure eDynamictesting ¢Independent *Execute the security
standard programming sManual testing security assessment  response plan
compliance oStatic code scan eExternal security

*Plan security *Code review assessment
features

*Plan security tests

ePlan security
response
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Security Validation

» Acts as first customer
* Is not a replacement for security testing during development

« Security Validation
— Check for “flaws” in the implementation of the S?DL

— ldeally, security validation finds:
* No issues that can be fixed/detected earlier

 Only issues that cannot be detect earlier _
(e.g., insecure default configurations, missing security documentation)

« Note, penetration tests in productive environments are different:
— They test the actual configuration
— They test the productive environment (e.g., cloud/hosting)
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How to Measure Success

* Analyze the vulnerabillities reported by
— Security Validation
— External security researchers
* Vulnerability not detected by our security testing tools
— Improve tool configuration
— Introduce new tools
* Vulnerability detected by our security testing tools
— Vulnerability in older software release
— Analyze reason for missing vulnerability
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« Analyze the vulnerabillities reported by
— Security Validation
— External security researchers
« Vulnerability not detected by our security testing tools
— Improve tool configuration
— Introduce new tools
* Vulnerability detected by our security testing tools
— Vulnerability in older software release
— Analyze reason for missing vulnerability

Success criteria: Percentage of vulnerabilities not covered by our

security testing tools increases
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LESSONS LEARNED
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* A holistic security awareness program for
— Developers
— Managers
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* A holistic security awareness program for
— Developers
— Managers

* Yes, security awareness is important - but
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* A holistic security awareness program for
— Developers
— Managers

* Yes, security awareness is important - but

Developer awareness is even more important!
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» Building a secure system more difficult than finding
a successful attack.

* Do not expect your developers to become
penetration testers (or security experts)!
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Security Testing for Developers

» Security testing tools for developers, need to
— Be applicable from the start of development
— Automate the security knowledge

— Be deeply integrated into the dev. env,, e.g.,
* IDE (instant feedback)
« Continuous integration

— Provide easy to understand fix recommendations
— Declare their “sweet spots”
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Collaborate!

Security experts need to collaborate with
development experts to

— Create easy to use security APIs
(ever tried to use an SSL API securely)

— Create languages and frameworks that
make it hard to implement insecure systems

— Explain how to program securely
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CONCLUSION
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Conclusion

« Secure software development is a

— Prerequisite for the secure and compliant operation:
We need SecDevOps!

— Risk of operating and maintaining IT systems

e Security requires an end-to-end approach

— Training of developers, architects, product owners
— Security testing during development

— Validation of your security testing efforts

— Maintenance and security patch management

 Developers are your most important ally
- Make life easy for them
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Contact Detalls:

« Achim D. Brucker

www.brucker.ch
achim.brucker@sap.com

« Stephen Hookings
stephen.hookings@sap.com

 Dimitar Yanev
dimitar.yanev@sap.com
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