
Bringing Security

Testing to Development

How to Enable Developers to

Act as Security Experts

Background: SAP SE

• SAP SE
– Business Software Vendor

– Over 68000 employees

– Worldwide development

• Myself
– Security Testing Strategist

– Researcher

– Working in the central

Software Security Team

2

De-centralized Secure Development Model

Central Security Expert Team

• S2DL Owner

• Organizes security trainings

• Defines product standard ``Security'‘

• Defines risk and threat assessment

methods

• Defines security testing strategy

• Selects and provides security testing

tools

• Validates products

• Defines and executes response

process

Local Security Experts

• Embedded into dev. teams

• Organize local security activities

• Support developers and architects

• Support product owners/responsibles

3

Development Teams

• Select technologies

• Select development model

• …

MOTIVATION

4

Vulnerability Distribution

0

500

1000

1500

2000

2500

3000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Code Execution DoS Overflow Memory Corruption Sql Injection

XSS Directory Traversal Bypass something Gain Privileges CSRF

5

Source: www.cvedetails.com

When Do We Fix Bugs?

Microsoft’s SDL

7

RISK BASED SECURITY TESTING

AS PART OF SAP’S S2DL

Our Start: SAST as Baseline

ABAP
42%

C/C++
13%

Java
30%

JavaScript
7%

Others
8%

 Mandatory since 2010 for all products

 Multiple billons lines analyzed

 Constant improvements:

– tool configuration (e.g., based on feedback from
development, validation, response)

– new tools and methods

Language Tool Vendor

ABAP CVA (SLIN_SEC) SAP

C/C++ Coverity Coverity

JavaScript, Ruby Checkmarx Checkmarx

Others Fortify HP

Are We Done?

• SAST Advantages
– Early in Development

– Wide range of vuln. Types

– Good fix instructions

• SAST Limitations
– Quality depends on

programming language used

– Usually covers only one layer of

the application stack

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Are We Done?

• SAST Advantages
– Early in Development

– Wide range of vuln. Types

– Good fix instructions

• SAST Limitations
– Quality depends on

programming language used

– Usually covers only one layer of

the application stack

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Checkmarx (JavaScript)

Fortify (Java) Coverity
(C/C++)

Are We Done?

• SAST Advantages
– Early in Development

– Wide range of vuln. Types

– Good fix instructions

• SAST Limitations
– Quality depends on

programming language used

– Usually covers only one layer of

the application stack

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Checkmarx (JavaScript)

Fortify (Java)

D
O

M
in

at
o

r

Coverity
(C/C++)

H
P

 W
eb

In
sp

ec
t

Are We Done?

• SAST Advantages
– Early in Development

– Wide range of vuln. Types

– Good fix instructions

• SAST Limitations
– Quality depends on

programming language used

– Usually covers only one layer of

the application stack

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Fortify (Java)

D
O

M
in

at
o

r

Checkmarx

H
P

 W
eb

In
sp

ec
t

How To Select The Best Tools

Example: Security Test Plan

• Mobile Device
• Risk: Attacker might inject JavaScript (XSS)

• Security Control 1: Use only UI5 controls

• Assumption: SAP Kapsel with SMP and Afaria
– Test: Static Code Analysis using Checkmarx

» Justification: recommended tool

» Expected Coverage: all client-side JavaScript code

» Expected Effort: 10min per development day (ramp-up not included)

• Security Control 2: use only SSL connections with valid certificates
– Test 1: Static Code Analysis for finding non-https connections

» Justification: low effort, already included in test for Security Control
1

» Expected Coverage: all client-side JavaScript code

» Expected Effort: included in effort for scans for Security Control 1

– Test 2: Manual test with invalid certs (e.g., self-signed, own CA)

» Justification: no automated tool available, self-signed certificates
allowed during development

» Expected Coverage: all https connections used for accessing the Web Server

» Expected Effort: ½ day towards the end of development

• Web Server / Web Application (…)

Example: Security Test Report

• Mobile Device
• Risk: Attacker might inject JavaScript (XSS)

• Security Control 1: Use only UI5 controls

• Assumption: SAP Kapsel with SMP and Afaria
– Test: Static Code Analysis using Checkmarx

» Result: no issues

» Actual Coverage: all client-side JavaScript code

» Actual Effort: total effort 2 days (15min per day, instead of expected 10)

• Security Control 2: use only SSL connections with valid certificates
– Test 1: Static Code Analysis for finding non-https connections

» Result: exempted one issue

» Actual Coverage: all client-side JavaScript code

» Actual Effort: included in effort for scans for Security Control 1

– Test 2: Manual test with invalid certs (e.g., self-signed, own CA)

» Expected Coverage: all https connections used for accessing the Web Server

» Expected Effort: ½ day towards the end of development

• Web Server / Web Application (…)

SAP’s S2DL

Security Validation

• Acts as first customer

• Is not a replacement for security testing during development

• Security Validation
– Check for “flaws” in the implementation of the S2DL

– Ideally, security validation finds:
• No issues that can be fixed/detected earlier

• Only issues that cannot be detect earlier
(e.g., insecure default configurations, missing security documentation)

• Note, penetration tests in productive environments are different:
– They test the actual configuration

– They test the productive environment (e.g., cloud/hosting)

How to Measure Success
• Analyze the vulnerabilities reported by

– Security Validation

– External security researchers

• Vulnerability not detected by our security testing tools
– Improve tool configuration

– Introduce new tools

• Vulnerability detected by our security testing tools
– Vulnerability in older software release

– Analyze reason for missing vulnerability

How to Measure Success
• Analyze the vulnerabilities reported by

– Security Validation

– External security researchers

• Vulnerability not detected by our security testing tools
– Improve tool configuration

– Introduce new tools

• Vulnerability detected by our security testing tools
– Vulnerability in older software release

– Analyze reason for missing vulnerability

Success criteria: Percentage of vulnerabilities not covered by our
security testing tools increases

LESSONS LEARNED

Key Success Factor

• A holistic security awareness program for

– Developers

– Managers

Key Success Factor

• A holistic security awareness program for

– Developers

– Managers

• Yes, security awareness is important - but

Key Success Factor

• A holistic security awareness program for

– Developers

– Managers

• Yes, security awareness is important - but

Developer awareness is even more important!

Listen to Your Developers!

• Building a secure system more difficult than finding
a successful attack.

• Do not expect your developers to become
penetration testers (or security experts)!

We are often talking about a lack of security awareness

and, by that, forget the problem of lacking

development awareness.

Security Testing for Developers

• Security testing tools for developers, need to

– Be applicable from the start of development

– Automate the security knowledge

– Be deeply integrated into the dev. env., e.g.,

• IDE (instant feedback)

• Continuous integration

– Provide easy to understand fix recommendations

– Declare their “sweet spots”

Collaborate!

Security experts need to collaborate with

development experts to

– Create easy to use security APIs

(ever tried to use an SSL API securely)

– Create languages and frameworks that

make it hard to implement insecure systems

– Explain how to program securely

CONCLUSION

Conclusion
• Secure software development is a

– Prerequisite for the secure and compliant operation:

 We need SecDevOps!

– Risk of operating and maintaining IT systems

• Security requires an end-to-end approach
– Training of developers, architects, product owners

– Security testing during development

– Validation of your security testing efforts

– Maintenance and security patch management

• Developers are your most important ally
- Make life easy for them

Thank You

Contact Details:

• Achim D. Brucker
www.brucker.ch

achim.brucker@sap.com

• Stephen Hookings
stephen.hookings@sap.com

• Dimitar Yanev
dimitar.yanev@sap.com

33

Bibliography

• http://www.sap.com/security

• Ruediger Bachmann and Achim D. Brucker. Developing
secure software: A holistic approach to security testing.
Datenschutz und Datensicherheit (DuD), 38(4):257–261,
April 2014.
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014

• Achim D. Brucker and Uwe Sodan. Deploying static
application security testing on a large scale. In Stefan
Katzenbeisser, Volkmar Lotz, and Edgar Weippl, editors,
GI Sicherheit 2014, volume 228 of Lecture Notes in
Informatics, pages 91–101. GI, March 2014.
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014

http://www.sap.com/security
http://www.sap.com/security
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/bachmann.ea-security-testing-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014

