
Bringing Security 

Testing to Development 

How to Enable Developers to 

Act as Security Experts 



Background: SAP SE  

• SAP SE 
– Business Software Vendor 

– Over 68000 employees 

– Worldwide development 

 

• Myself 
– Security Testing Strategist 

– Researcher 

– Working in the central 

Software Security Team 
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De-centralized Secure Development Model 

Central Security Expert Team 

• S2DL Owner 

• Organizes security trainings 

• Defines product standard ``Security'‘ 

• Defines risk and threat assessment 

methods 

• Defines security testing strategy 

• Selects and provides security testing 

tools 

• Validates products 

• Defines and executes response 

process 

 

Local Security Experts 

• Embedded into dev. teams 

• Organize local security activities 

• Support developers and architects 

• Support product owners/responsibles 
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Development Teams 

• Select technologies 

• Select development model 

• … 



MOTIVATION 
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Vulnerability Distribution 
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Source: www.cvedetails.com 



When Do We Fix Bugs? 



Microsoft’s SDL 
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RISK BASED SECURITY TESTING 

AS PART OF  SAP’S S2DL 



Our Start: SAST as Baseline 

ABAP 
42% 

C/C++ 
13% 

Java 
30% 

JavaScript 
7% 

Others 
8% 

 Mandatory since 2010 for all products 

 Multiple billons lines analyzed 

 Constant improvements: 

– tool configuration (e.g., based on feedback from 
development, validation, response) 

– new tools and methods   

Language Tool Vendor 

ABAP CVA (SLIN_SEC) SAP 

C/C++ Coverity Coverity 

JavaScript, Ruby Checkmarx Checkmarx 

Others Fortify HP 



Are We Done?  

• SAST Advantages 
– Early in Development 

– Wide range of vuln. Types 

– Good fix instructions 

• SAST Limitations 
– Quality depends on 

programming language used 

– Usually covers only one layer of 

the application stack 

Client Application 

Web Browser 

Server Application 

Runtime Container 

Backend Systems 
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How To Select The Best Tools 



Example: Security Test Plan 

• Mobile Device 
• Risk: Attacker might inject JavaScript (XSS) 

• Security Control 1:        Use only UI5 controls 

• Assumption:                  SAP Kapsel with SMP and Afaria  
– Test:                           Static Code Analysis using Checkmarx  

» Justification:                 recommended tool  

» Expected Coverage:    all client-side JavaScript code  

» Expected Effort:           10min per development day (ramp-up not included) 

• Security Control 2:         use only SSL connections with valid certificates  
– Test 1:                         Static Code Analysis for finding non-https connections 

» Justification:                  low effort, already included in test for Security Control 
1 

» Expected Coverage:     all client-side JavaScript code 

» Expected Effort:            included in effort for scans for Security Control 1 

– Test 2:                         Manual test with invalid certs (e.g., self-signed, own CA) 

» Justification:               no automated tool available, self-signed certificates 
allowed during development 

» Expected Coverage: all https connections used for accessing the Web Server 

» Expected Effort:         ½ day towards the end of development  

• Web Server / Web Application (…) 



Example: Security Test Report 

• Mobile Device 
• Risk: Attacker might inject JavaScript (XSS) 

• Security Control 1:        Use only UI5 controls 

• Assumption:                  SAP Kapsel with SMP and Afaria 
– Test:                           Static Code Analysis using Checkmarx 

» Result:                   no issues  

» Actual Coverage:  all client-side JavaScript code  

» Actual Effort:         total effort 2 days (15min per day, instead of expected 10) 

• Security Control 2:        use only SSL connections with valid certificates  
– Test 1:                         Static Code Analysis for finding non-https connections 

» Result:                    exempted one issue 

» Actual Coverage:   all client-side JavaScript code 

» Actual Effort:          included in effort for scans for Security Control 1 

– Test 2:                        Manual test with invalid certs (e.g., self-signed, own CA) 

» Expected Coverage: all https connections used for accessing the Web Server 

» Expected Effort:         ½ day towards the end of development  

• Web Server / Web Application (…) 
 



SAP’s S2DL 



Security Validation 

• Acts as first customer 

• Is not a replacement for security testing during development 

 

• Security Validation  
– Check for “flaws” in the implementation of the S2DL 

– Ideally, security validation finds: 
• No issues that can be fixed/detected earlier  

• Only issues that cannot be detect earlier  
(e.g., insecure default configurations, missing security documentation) 

 

• Note, penetration tests in productive environments are different: 
– They test the actual configuration 

– They test the productive environment (e.g., cloud/hosting) 



How to Measure Success 
• Analyze the vulnerabilities reported by  

– Security Validation 

– External security researchers  

• Vulnerability not detected by our security testing tools 
– Improve tool configuration 

– Introduce new tools 

• Vulnerability detected by our security testing tools 
– Vulnerability in older software release 

– Analyze reason for missing vulnerability 
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Success criteria: Percentage of vulnerabilities not covered by our 
security testing tools increases 



LESSONS LEARNED 



Key Success Factor 

• A holistic security awareness program for 

– Developers 

– Managers 
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Key Success Factor 

• A holistic security awareness program for 

– Developers 

– Managers 

• Yes, security awareness is important - but 

Developer awareness is even more important! 



Listen to Your Developers! 

• Building a secure system more difficult than finding 
a successful attack. 

• Do not expect your developers to become 
penetration testers (or security experts)! 

We are often talking about a lack of security awareness 

and, by that, forget the problem of lacking 

development awareness.  



Security Testing for Developers 

• Security testing tools for developers, need to  

– Be applicable from the start of development 

– Automate the security knowledge 

– Be deeply integrated into the dev. env., e.g.,  

• IDE (instant feedback) 

• Continuous integration  

– Provide easy to understand fix recommendations 

– Declare their “sweet spots”  



Collaborate! 

Security experts need to collaborate with 

development experts to 

– Create easy to use security APIs 

(ever tried to use an SSL API securely) 

– Create languages and frameworks that 

make it hard to implement insecure systems  

– Explain how to program securely 



CONCLUSION 



Conclusion 
• Secure software development is a  

–  Prerequisite for the secure and compliant operation: 

 We need SecDevOps!  

– Risk of operating and maintaining IT systems 

• Security requires an end-to-end approach 
– Training of developers, architects, product owners 

– Security testing during development  

– Validation of your security testing efforts 

– Maintenance and security patch management 

• Developers are your most important ally 
- Make life easy for them 



Thank You 

Contact Details: 

• Achim D. Brucker 
www.brucker.ch 

achim.brucker@sap.com 

• Stephen Hookings 
stephen.hookings@sap.com 

• Dimitar Yanev 
dimitar.yanev@sap.com 
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